首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   749篇
  免费   38篇
  国内免费   1篇
  2021年   6篇
  2020年   4篇
  2019年   3篇
  2018年   3篇
  2017年   6篇
  2016年   11篇
  2015年   8篇
  2014年   10篇
  2013年   26篇
  2012年   36篇
  2011年   30篇
  2010年   15篇
  2009年   19篇
  2008年   25篇
  2007年   25篇
  2006年   41篇
  2005年   49篇
  2004年   28篇
  2003年   34篇
  2002年   54篇
  2001年   59篇
  2000年   46篇
  1999年   31篇
  1998年   16篇
  1997年   8篇
  1996年   17篇
  1995年   12篇
  1994年   8篇
  1992年   6篇
  1991年   10篇
  1990年   15篇
  1989年   11篇
  1988年   12篇
  1987年   5篇
  1986年   7篇
  1985年   6篇
  1984年   7篇
  1983年   3篇
  1980年   6篇
  1979年   3篇
  1978年   4篇
  1977年   4篇
  1976年   5篇
  1975年   11篇
  1974年   3篇
  1973年   4篇
  1972年   7篇
  1971年   3篇
  1970年   5篇
  1969年   4篇
排序方式: 共有788条查询结果,搜索用时 27 毫秒
91.
Bone is the most common site of breast cancer metastasis. Although it is widely accepted that the microenvironment influences cancer cell behavior, little is known about breast cancer cell properties and behaviors within the native microenvironment of human bone tissue.We have developed approaches to track, quantify and modulate human breast cancer cells within the microenvironment of cultured human bone tissue fragments isolated from discarded femoral heads following total hip replacement surgeries. Using breast cancer cells engineered for luciferase and enhanced green fluorescent protein (EGFP) expression, we are able to reproducibly quantitate migration and proliferation patterns using bioluminescence imaging (BLI), track cell interactions within the bone fragments using fluorescence microscopy, and evaluate breast cells after colonization with flow cytometry. The key advantages of this model include: 1) a native, architecturally intact tissue microenvironment that includes relevant human cell types, and 2) direct access to the microenvironment, which facilitates rapid quantitative and qualitative monitoring and perturbation of breast and bone cell properties, behaviors and interactions. A primary limitation, at present, is the finite viability of the tissue fragments, which confines the window of study to short-term culture. Applications of the model system include studying the basic biology of breast cancer and other bone-seeking malignancies within the metastatic niche, and developing therapeutic strategies to effectively target breast cancer cells in bone tissues.  相似文献   
92.
Multiple stressors threaten stream physical and biological quality, including elevated nutrients and other contaminants, riparian and in-stream habitat degradation and altered natural flow regime. Unconventional oil and gas (UOG) development is one emerging stressor that spans the U.S. UOG development could alter stream sedimentation, riparian extent and composition, in-stream flow, and water quality. We developed indices to describe the watershed sensitivity and exposure to natural and anthropogenic disturbances and computed a vulnerability index from these two scores across stream catchments in six productive shale plays. We predicted that catchment vulnerability scores would vary across plays due to climatic, geologic and anthropogenic differences. Across-shale averages supported this prediction revealing differences in catchment sensitivity, exposure, and vulnerability scores that resulted from different natural and anthropogenic environmental conditions. For example, semi-arid Western shale play catchments (Mowry, Hilliard, and Bakken) tended to be more sensitive to stressors due to low annual average precipitation and extensive grassland. Catchments in the Barnett and Marcellus-Utica were naturally sensitive from more erosive soils and steeper catchment slopes, but these catchments also experienced areas with greater UOG densities and urbanization. Our analysis suggested Fayetteville and Barnett catchments were vulnerable due to existing anthropogenic exposure. However, all shale plays had catchments that spanned a wide vulnerability gradient. Our results identify vulnerable catchments that can help prioritize stream protection and monitoring efforts. Resource managers can also use these findings to guide local development activities to help reduce possible environmental effects.  相似文献   
93.
Interspecific potato somatic hybrids between Solanum tuberosum L. (di)haploid C-13 and 1 endosperm balance number non-tuberous wild species S. etuberosum Lindl. were produced by protoplasts electrofusion. The objective was to transfer virus resistance from this wild species into the cultivated potatoes. Post-fusion products were cultured in VKM medium followed by regeneration of calli in MS13 K medium at 20°C under a 16-h photoperiod, and regenerants were multiplied on MS medium. Twenty-one somatic hybrids were confirmed by RAPD, SSR and cytoplasm (chloroplast/mitochondria) type analysis possessing species-specific diagnostic bands of corresponding parents. Tetraploid nature of these somatic hybrids was determined through flow cytometry analysis. Somatic hybrids showed intermediate phenotypes (plant, leaves and floral morphology) to their parents in glass-house grown plants. All the somatic hybrids were male-fertile. ELISA assay of somatic hybrids after artificial inoculation of Potato virus Y (PVY) infection reveals high PVY resistance.  相似文献   
94.
95.
96.
TNF-alpha is a pro-inflammatory cytokine that plays a key role in disorders due to HIV-1 infection and replication such as Kaposi sarcoma, wasting, aphthous ulcerations and progression to AIDS. The controversial drug thalidomide is anti-inflammatory, anti-angiogenic and a selective inhibitor of TNF-alpha that is being studied as a treatment for HIV-1-related disorders, immune disorders and cancer. The cellular and molecular mechanism of thalidomide is unclear despite renewed clinical interest in the drug. Previous data from this laboratory indicate that thalidomide decreases cell growth and cell-cell interactions of human T leukemic cells. The specific aim of the present study is to determine whether thalidomide administration induces cell death via apoptosis. Low dose thalidomide treatment of human T leukemic cells exhibited rapid increases in caspase-3 activity, annexin V-FITC binding and DNA disintegration that is characteristic of apoptosis. These data indicate that low doses of thalidomide signal human T leukemic cells to die by apoptosis, which is a possible method of altering inflammatory cells and inflammatory activities.  相似文献   
97.
Law CJ  Yang Q  Soudant C  Maloney PC  Wang DN 《Biochemistry》2007,46(43):12190-12197
Secondary active transport of substrate across the cell membrane is crucial to many cellular and physiological processes. The crystal structure of one member of the secondary active transporter family, the sn-glycerol-3-phosphate (G3P) transporter (GlpT) of the inner membrane of Escherichia coli, suggests a mechanism for substrate translocation across the membrane that involves a rocker-switch-type movement of the protein. This rocker-switch mechanism makes two specific predictions with respect to kinetic behavior: the transport rate increases with the temperature, whereas the binding affinity of the transporter to a substrate is temperature-independent. In this work, we directly tested these two predictions by transport kinetics and substrate-binding experiments, integrating the data on this single system into a coherent set of observations. The transport kinetics of the physiologically relevant G3P-phosphate antiport reaction were characterized at different temperatures using both E. coli whole cells and GlpT reconstituted into proteoliposomes. Substrate-binding affinity of the transporter was measured using tryptophan fluorescence quenching in detergent solution. Indeed, the substrate transport velocity of GlpT increased dramatically with temperature. In contrast, neither the apparent Michaelis constant (Km) nor the apparent substrate-binding dissociation constant (Kd) showed temperature dependence. Moreover, GlpT-catalyzed G3P translocation exhibited a completely linear Arrhenius function with an activation energy of 35.2 kJ mol-1 for the transporter reconstituted into proteoliposomes, suggesting that the substrate-loaded transporter is delicately poised between the inward- and outward-facing conformations. When these results are taken together, they are in agreement with a rocker-switch mechanism for GlpT.  相似文献   
98.
The degree of variability in the temperature difference between the brain and carotid arterial blood is greater than expected from the presumed tight coupling between brain heat production and brain blood flow. In animals with a carotid rete, some of that variability arises in the rete. Using thermometric data loggers in five sheep, we have measured the temperature of arterial blood before it enters the carotid rete and after it has perfused the carotid rete, as well as hypothalamic temperature, every 2 min for between 6 and 12 days. The sheep were conscious, unrestrained, and maintained at an ambient temperature of 20-22 degrees C. On average, carotid arterial blood and brain temperatures were the same, with a decrease in blood temperature of 0.35 degrees C across the rete and then an increase in temperature of the same magnitude between blood leaving the rete and the brain. Rete cooling of arterial blood took place at temperatures below the threshold for selective brain cooling. All of the variability in the temperature difference between carotid artery and brain was attributable statistically to variability in the temperature difference across the rete. The temperature difference between arterial blood leaving the rete and the brain varied from -0.1 to 0.9 degrees C. Some of this variability was related to a thermal inertia of the brain, but the majority we attribute to instability in the relationship between brain blood flow and brain heat production.  相似文献   
99.
To test whether baboons are capable of implementing selective brain cooling, we measured, every 5 min, the temperature in their hypothalamus, carotid arterial bloodstream, and abdominal cavity. The baboons were unrestrained and exposed to 22 degrees C for 7 days and then to a cyclic environment with 15 degrees C at night and 35 degrees C during the day for a further 7 days. During the latter 7 days some of the baboons also were exposed to radiant heat during the day. For three days, during heat exposure, water was withheld. At no time was the hypothalamus cooler than carotid arterial blood, despite brain temperatures above 40 degrees C. With little variation, the hypothalamus was consistently 0.5 degrees C warmer than arterial blood. At high body temperatures, the hypothalamus was sometimes cooler than the abdomen. Abdominal temperature was more variable than arterial blood and tended to exceed arterial blood temperature at higher body temperatures. Hypothalamic temperature cooler than a warm abdomen is not evidence for selective brain cooling. In species that can implement selective brain cooling, the brain is most likely to be cooler than carotid arterial blood when an animal is hyperthermic, during heat exposure, and also dehydrated and undisturbed by human presence. When we exposed baboons to high ambient temperatures while they were water deprived and undisturbed, they never implemented selective brain cooling. We conclude that baboons cannot implement selective brain cooling and can find no convincing evidence that any primate species can do so.  相似文献   
100.
ABC transporters: how small machines do a big job   总被引:7,自引:0,他引:7  
Transporters from the ATP-binding cassette (ABC) superfamily operate in all organisms, from bacteria to humans, to pump substances across biological membranes. Recent high-resolution views of ABC transporters in different conformational states provide clues as to how ATP might be used to drive the structural reorganizations that accompany membrane transport. Importantly, it now appears that a putative translocation pathway running through the center of the transporter might be gated alternately, either at the inside or the outside of the cytoplasmic membrane, coupling substrate translocation to a cycle of ATP-dependent conformational changes. ATP binding and ATP hydrolysis have distinct roles in this cycle: binding favors the outward-facing orientation, whereas hydrolysis returns the transporter to an inward-facing conformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号